Metamath Proof Explorer


Theorem negne0i

Description: The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004)

Ref Expression
Hypotheses negidi.1
|- A e. CC
negne0i.2
|- A =/= 0
Assertion negne0i
|- -u A =/= 0

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 negne0i.2
 |-  A =/= 0
3 1 negne0bi
 |-  ( A =/= 0 <-> -u A =/= 0 )
4 2 3 mpbi
 |-  -u A =/= 0