Description: If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
negned.2 | |- ( ph -> B e. CC ) |
||
negned.3 | |- ( ph -> A =/= B ) |
||
Assertion | negned | |- ( ph -> -u A =/= -u B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | negned.2 | |- ( ph -> B e. CC ) |
|
3 | negned.3 | |- ( ph -> A =/= B ) |
|
4 | 1 2 | neg11ad | |- ( ph -> ( -u A = -u B <-> A = B ) ) |
5 | 4 | necon3bid | |- ( ph -> ( -u A =/= -u B <-> A =/= B ) ) |
6 | 3 5 | mpbird | |- ( ph -> -u A =/= -u B ) |