Description: If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) | |
| negned.2 | |- ( ph -> B e. CC ) | ||
| negned.3 | |- ( ph -> A =/= B ) | ||
| Assertion | negned | |- ( ph -> -u A =/= -u B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) | |
| 2 | negned.2 | |- ( ph -> B e. CC ) | |
| 3 | negned.3 | |- ( ph -> A =/= B ) | |
| 4 | 1 2 | neg11ad | |- ( ph -> ( -u A = -u B <-> A = B ) ) | 
| 5 | 4 | necon3bid | |- ( ph -> ( -u A =/= -u B <-> A =/= B ) ) | 
| 6 | 3 5 | mpbird | |- ( ph -> -u A =/= -u B ) |