Database
REAL AND COMPLEX NUMBERS
Integer sets
Some properties of specific numbers
negneg1e1
Next ⟩
1pneg1e0
Metamath Proof Explorer
Unicode
Structured
Theorem
negneg1e1
Description:
-u -u 1
is 1.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
negneg1e1
|- -u -u 1 = 1
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
|- 1 e. CC
2
1
negnegi
|- -u -u 1 = 1