Metamath Proof Explorer


Theorem negneg1e1

Description: -u -u 1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion negneg1e1
|- -u -u 1 = 1

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 1 negnegi
 |-  -u -u 1 = 1