Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | negreb | |- ( A e. CC -> ( -u A e. RR <-> A e. RR ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | |- ( -u A e. RR -> -u -u A e. RR ) |
|
2 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
3 | 2 | eleq1d | |- ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) ) |
4 | 1 3 | syl5ib | |- ( A e. CC -> ( -u A e. RR -> A e. RR ) ) |
5 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
6 | 4 5 | impbid1 | |- ( A e. CC -> ( -u A e. RR <-> A e. RR ) ) |