Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| negrebd.2 | |- ( ph -> -u A e. RR ) |
||
| Assertion | negrebd | |- ( ph -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | negrebd.2 | |- ( ph -> -u A e. RR ) |
|
| 3 | negreb | |- ( A e. CC -> ( -u A e. RR <-> A e. RR ) ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( -u A e. RR <-> A e. RR ) ) |
| 5 | 2 4 | mpbid | |- ( ph -> A e. RR ) |