| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( ( -us ` A ) = ( -us ` B ) -> ( -us ` ( -us ` A ) ) = ( -us ` ( -us ` B ) ) ) |
| 2 |
|
negnegs |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |
| 3 |
|
negnegs |
|- ( B e. No -> ( -us ` ( -us ` B ) ) = B ) |
| 4 |
2 3
|
eqeqan12d |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` ( -us ` A ) ) = ( -us ` ( -us ` B ) ) <-> A = B ) ) |
| 5 |
1 4
|
imbitrid |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) = ( -us ` B ) -> A = B ) ) |
| 6 |
|
fveq2 |
|- ( A = B -> ( -us ` A ) = ( -us ` B ) ) |
| 7 |
5 6
|
impbid1 |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) = ( -us ` B ) <-> A = B ) ) |