Metamath Proof Explorer


Theorem negs1s

Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025)

Ref Expression
Assertion negs1s
|- ( -us ` 1s ) = ( (/) |s { 0s } )

Proof

Step Hyp Ref Expression
1 1sno
 |-  1s e. No
2 negsval
 |-  ( 1s e. No -> ( -us ` 1s ) = ( ( -us " ( _Right ` 1s ) ) |s ( -us " ( _Left ` 1s ) ) ) )
3 1 2 ax-mp
 |-  ( -us ` 1s ) = ( ( -us " ( _Right ` 1s ) ) |s ( -us " ( _Left ` 1s ) ) )
4 right1s
 |-  ( _Right ` 1s ) = (/)
5 4 imaeq2i
 |-  ( -us " ( _Right ` 1s ) ) = ( -us " (/) )
6 ima0
 |-  ( -us " (/) ) = (/)
7 5 6 eqtri
 |-  ( -us " ( _Right ` 1s ) ) = (/)
8 left1s
 |-  ( _Left ` 1s ) = { 0s }
9 8 imaeq2i
 |-  ( -us " ( _Left ` 1s ) ) = ( -us " { 0s } )
10 negsfn
 |-  -us Fn No
11 0sno
 |-  0s e. No
12 fnimapr
 |-  ( ( -us Fn No /\ 0s e. No /\ 0s e. No ) -> ( -us " { 0s , 0s } ) = { ( -us ` 0s ) , ( -us ` 0s ) } )
13 10 11 11 12 mp3an
 |-  ( -us " { 0s , 0s } ) = { ( -us ` 0s ) , ( -us ` 0s ) }
14 negs0s
 |-  ( -us ` 0s ) = 0s
15 14 14 preq12i
 |-  { ( -us ` 0s ) , ( -us ` 0s ) } = { 0s , 0s }
16 13 15 eqtri
 |-  ( -us " { 0s , 0s } ) = { 0s , 0s }
17 dfsn2
 |-  { 0s } = { 0s , 0s }
18 17 imaeq2i
 |-  ( -us " { 0s } ) = ( -us " { 0s , 0s } )
19 16 18 17 3eqtr4i
 |-  ( -us " { 0s } ) = { 0s }
20 9 19 eqtri
 |-  ( -us " ( _Left ` 1s ) ) = { 0s }
21 7 20 oveq12i
 |-  ( ( -us " ( _Right ` 1s ) ) |s ( -us " ( _Left ` 1s ) ) ) = ( (/) |s { 0s } )
22 3 21 eqtri
 |-  ( -us ` 1s ) = ( (/) |s { 0s } )