Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
2 |
|
negsproplem2.1 |
|- ( ph -> A e. No ) |
3 |
|
negsfn |
|- -us Fn No |
4 |
|
fnfun |
|- ( -us Fn No -> Fun -us ) |
5 |
3 4
|
ax-mp |
|- Fun -us |
6 |
|
fvex |
|- ( _Right ` A ) e. _V |
7 |
6
|
funimaex |
|- ( Fun -us -> ( -us " ( _Right ` A ) ) e. _V ) |
8 |
5 7
|
mp1i |
|- ( ph -> ( -us " ( _Right ` A ) ) e. _V ) |
9 |
|
fvex |
|- ( _Left ` A ) e. _V |
10 |
9
|
funimaex |
|- ( Fun -us -> ( -us " ( _Left ` A ) ) e. _V ) |
11 |
5 10
|
mp1i |
|- ( ph -> ( -us " ( _Left ` A ) ) e. _V ) |
12 |
|
rightssold |
|- ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) |
13 |
|
imass2 |
|- ( ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) -> ( -us " ( _Right ` A ) ) C_ ( -us " ( _Old ` ( bday ` A ) ) ) ) |
14 |
12 13
|
ax-mp |
|- ( -us " ( _Right ` A ) ) C_ ( -us " ( _Old ` ( bday ` A ) ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
16 |
|
oldssno |
|- ( _Old ` ( bday ` A ) ) C_ No |
17 |
16
|
sseli |
|- ( a e. ( _Old ` ( bday ` A ) ) -> a e. No ) |
18 |
17
|
adantl |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> a e. No ) |
19 |
|
0sno |
|- 0s e. No |
20 |
19
|
a1i |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> 0s e. No ) |
21 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
22 |
21
|
uneq2i |
|- ( ( bday ` a ) u. ( bday ` 0s ) ) = ( ( bday ` a ) u. (/) ) |
23 |
|
un0 |
|- ( ( bday ` a ) u. (/) ) = ( bday ` a ) |
24 |
22 23
|
eqtri |
|- ( ( bday ` a ) u. ( bday ` 0s ) ) = ( bday ` a ) |
25 |
|
oldbdayim |
|- ( a e. ( _Old ` ( bday ` A ) ) -> ( bday ` a ) e. ( bday ` A ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> ( bday ` a ) e. ( bday ` A ) ) |
27 |
|
elun1 |
|- ( ( bday ` a ) e. ( bday ` A ) -> ( bday ` a ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) |
28 |
26 27
|
syl |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> ( bday ` a ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) |
29 |
24 28
|
eqeltrid |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> ( ( bday ` a ) u. ( bday ` 0s ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) |
30 |
15 18 20 29
|
negsproplem1 |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> ( ( -us ` a ) e. No /\ ( a ( -us ` 0s ) |
31 |
30
|
simpld |
|- ( ( ph /\ a e. ( _Old ` ( bday ` A ) ) ) -> ( -us ` a ) e. No ) |
32 |
31
|
ralrimiva |
|- ( ph -> A. a e. ( _Old ` ( bday ` A ) ) ( -us ` a ) e. No ) |
33 |
3
|
fndmi |
|- dom -us = No |
34 |
16 33
|
sseqtrri |
|- ( _Old ` ( bday ` A ) ) C_ dom -us |
35 |
|
funimass4 |
|- ( ( Fun -us /\ ( _Old ` ( bday ` A ) ) C_ dom -us ) -> ( ( -us " ( _Old ` ( bday ` A ) ) ) C_ No <-> A. a e. ( _Old ` ( bday ` A ) ) ( -us ` a ) e. No ) ) |
36 |
5 34 35
|
mp2an |
|- ( ( -us " ( _Old ` ( bday ` A ) ) ) C_ No <-> A. a e. ( _Old ` ( bday ` A ) ) ( -us ` a ) e. No ) |
37 |
32 36
|
sylibr |
|- ( ph -> ( -us " ( _Old ` ( bday ` A ) ) ) C_ No ) |
38 |
14 37
|
sstrid |
|- ( ph -> ( -us " ( _Right ` A ) ) C_ No ) |
39 |
|
leftssold |
|- ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) |
40 |
|
imass2 |
|- ( ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) -> ( -us " ( _Left ` A ) ) C_ ( -us " ( _Old ` ( bday ` A ) ) ) ) |
41 |
39 40
|
ax-mp |
|- ( -us " ( _Left ` A ) ) C_ ( -us " ( _Old ` ( bday ` A ) ) ) |
42 |
41 37
|
sstrid |
|- ( ph -> ( -us " ( _Left ` A ) ) C_ No ) |
43 |
|
rightssno |
|- ( _Right ` A ) C_ No |
44 |
|
fvelimab |
|- ( ( -us Fn No /\ ( _Right ` A ) C_ No ) -> ( a e. ( -us " ( _Right ` A ) ) <-> E. xR e. ( _Right ` A ) ( -us ` xR ) = a ) ) |
45 |
3 43 44
|
mp2an |
|- ( a e. ( -us " ( _Right ` A ) ) <-> E. xR e. ( _Right ` A ) ( -us ` xR ) = a ) |
46 |
|
leftssno |
|- ( _Left ` A ) C_ No |
47 |
|
fvelimab |
|- ( ( -us Fn No /\ ( _Left ` A ) C_ No ) -> ( b e. ( -us " ( _Left ` A ) ) <-> E. xL e. ( _Left ` A ) ( -us ` xL ) = b ) ) |
48 |
3 46 47
|
mp2an |
|- ( b e. ( -us " ( _Left ` A ) ) <-> E. xL e. ( _Left ` A ) ( -us ` xL ) = b ) |
49 |
45 48
|
anbi12i |
|- ( ( a e. ( -us " ( _Right ` A ) ) /\ b e. ( -us " ( _Left ` A ) ) ) <-> ( E. xR e. ( _Right ` A ) ( -us ` xR ) = a /\ E. xL e. ( _Left ` A ) ( -us ` xL ) = b ) ) |
50 |
|
reeanv |
|- ( E. xR e. ( _Right ` A ) E. xL e. ( _Left ` A ) ( ( -us ` xR ) = a /\ ( -us ` xL ) = b ) <-> ( E. xR e. ( _Right ` A ) ( -us ` xR ) = a /\ E. xL e. ( _Left ` A ) ( -us ` xL ) = b ) ) |
51 |
49 50
|
bitr4i |
|- ( ( a e. ( -us " ( _Right ` A ) ) /\ b e. ( -us " ( _Left ` A ) ) ) <-> E. xR e. ( _Right ` A ) E. xL e. ( _Left ` A ) ( ( -us ` xR ) = a /\ ( -us ` xL ) = b ) ) |
52 |
|
lltropt |
|- ( _Left ` A ) < |
53 |
52
|
a1i |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( _Left ` A ) < |
54 |
|
simprr |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xL e. ( _Left ` A ) ) |
55 |
|
simprl |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xR e. ( _Right ` A ) ) |
56 |
53 54 55
|
ssltsepcd |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xL |
57 |
1
|
adantr |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
58 |
46
|
sseli |
|- ( xL e. ( _Left ` A ) -> xL e. No ) |
59 |
58
|
ad2antll |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xL e. No ) |
60 |
43
|
sseli |
|- ( xR e. ( _Right ` A ) -> xR e. No ) |
61 |
60
|
adantr |
|- ( ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) -> xR e. No ) |
62 |
61
|
adantl |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xR e. No ) |
63 |
39
|
sseli |
|- ( xL e. ( _Left ` A ) -> xL e. ( _Old ` ( bday ` A ) ) ) |
64 |
63
|
ad2antll |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xL e. ( _Old ` ( bday ` A ) ) ) |
65 |
|
oldbdayim |
|- ( xL e. ( _Old ` ( bday ` A ) ) -> ( bday ` xL ) e. ( bday ` A ) ) |
66 |
64 65
|
syl |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( bday ` xL ) e. ( bday ` A ) ) |
67 |
12
|
a1i |
|- ( ph -> ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) ) |
68 |
67
|
sselda |
|- ( ( ph /\ xR e. ( _Right ` A ) ) -> xR e. ( _Old ` ( bday ` A ) ) ) |
69 |
68
|
adantrr |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> xR e. ( _Old ` ( bday ` A ) ) ) |
70 |
|
oldbdayim |
|- ( xR e. ( _Old ` ( bday ` A ) ) -> ( bday ` xR ) e. ( bday ` A ) ) |
71 |
69 70
|
syl |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( bday ` xR ) e. ( bday ` A ) ) |
72 |
|
bdayelon |
|- ( bday ` xL ) e. On |
73 |
|
bdayelon |
|- ( bday ` xR ) e. On |
74 |
|
bdayelon |
|- ( bday ` A ) e. On |
75 |
|
onunel |
|- ( ( ( bday ` xL ) e. On /\ ( bday ` xR ) e. On /\ ( bday ` A ) e. On ) -> ( ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( bday ` A ) <-> ( ( bday ` xL ) e. ( bday ` A ) /\ ( bday ` xR ) e. ( bday ` A ) ) ) ) |
76 |
72 73 74 75
|
mp3an |
|- ( ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( bday ` A ) <-> ( ( bday ` xL ) e. ( bday ` A ) /\ ( bday ` xR ) e. ( bday ` A ) ) ) |
77 |
66 71 76
|
sylanbrc |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( bday ` A ) ) |
78 |
|
elun1 |
|- ( ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( bday ` A ) -> ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) |
79 |
77 78
|
syl |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( ( bday ` xL ) u. ( bday ` xR ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) |
80 |
57 59 62 79
|
negsproplem1 |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( ( -us ` xL ) e. No /\ ( xL ( -us ` xR ) |
81 |
80
|
simprd |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( xL ( -us ` xR ) |
82 |
56 81
|
mpd |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( -us ` xR ) |
83 |
|
breq12 |
|- ( ( ( -us ` xR ) = a /\ ( -us ` xL ) = b ) -> ( ( -us ` xR ) a |
84 |
82 83
|
syl5ibcom |
|- ( ( ph /\ ( xR e. ( _Right ` A ) /\ xL e. ( _Left ` A ) ) ) -> ( ( ( -us ` xR ) = a /\ ( -us ` xL ) = b ) -> a |
85 |
84
|
rexlimdvva |
|- ( ph -> ( E. xR e. ( _Right ` A ) E. xL e. ( _Left ` A ) ( ( -us ` xR ) = a /\ ( -us ` xL ) = b ) -> a |
86 |
51 85
|
biimtrid |
|- ( ph -> ( ( a e. ( -us " ( _Right ` A ) ) /\ b e. ( -us " ( _Left ` A ) ) ) -> a |
87 |
86
|
3impib |
|- ( ( ph /\ a e. ( -us " ( _Right ` A ) ) /\ b e. ( -us " ( _Left ` A ) ) ) -> a |
88 |
8 11 38 42 87
|
ssltd |
|- ( ph -> ( -us " ( _Right ` A ) ) < |