Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
2 |
|
negsproplem2.1 |
|- ( ph -> A e. No ) |
3 |
1 2
|
negsproplem2 |
|- ( ph -> ( -us " ( _Right ` A ) ) < |
4 |
|
scutcut |
|- ( ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < |
5 |
3 4
|
syl |
|- ( ph -> ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < |
6 |
|
negsval |
|- ( A e. No -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) |
8 |
7
|
eleq1d |
|- ( ph -> ( ( -us ` A ) e. No <-> ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No ) ) |
9 |
7
|
sneqd |
|- ( ph -> { ( -us ` A ) } = { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } ) |
10 |
9
|
breq2d |
|- ( ph -> ( ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) < |
11 |
9
|
breq1d |
|- ( ph -> ( { ( -us ` A ) } < { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } < |
12 |
8 10 11
|
3anbi123d |
|- ( ph -> ( ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < |
13 |
5 12
|
mpbird |
|- ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < |