Metamath Proof Explorer


Theorem negsproplem3

Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses negsproplem.1
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
negsproplem2.1
|- ( ph -> A e. No )
Assertion negsproplem3
|- ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <

Proof

Step Hyp Ref Expression
1 negsproplem.1
 |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
2 negsproplem2.1
 |-  ( ph -> A e. No )
3 1 2 negsproplem2
 |-  ( ph -> ( -us " ( _Right ` A ) ) <
4 scutcut
 |-  ( ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) <
5 3 4 syl
 |-  ( ph -> ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) <
6 negsval
 |-  ( A e. No -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) )
7 2 6 syl
 |-  ( ph -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) )
8 7 eleq1d
 |-  ( ph -> ( ( -us ` A ) e. No <-> ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No ) )
9 7 sneqd
 |-  ( ph -> { ( -us ` A ) } = { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } )
10 9 breq2d
 |-  ( ph -> ( ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) <
11 9 breq1d
 |-  ( ph -> ( { ( -us ` A ) } < { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } <
12 8 10 11 3anbi123d
 |-  ( ph -> ( ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) <
13 5 12 mpbird
 |-  ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <