Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
2 |
|
negsproplem4.1 |
|- ( ph -> A e. No ) |
3 |
|
negsproplem4.2 |
|- ( ph -> B e. No ) |
4 |
|
negsproplem4.3 |
|- ( ph -> A |
5 |
|
negsproplem5.4 |
|- ( ph -> ( bday ` B ) e. ( bday ` A ) ) |
6 |
1 2
|
negsproplem3 |
|- ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < |
7 |
6
|
simp2d |
|- ( ph -> ( -us " ( _Right ` A ) ) < |
8 |
|
negsfn |
|- -us Fn No |
9 |
|
rightssno |
|- ( _Right ` A ) C_ No |
10 |
|
bdayelon |
|- ( bday ` A ) e. On |
11 |
|
oldbday |
|- ( ( ( bday ` A ) e. On /\ B e. No ) -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) |
12 |
10 3 11
|
sylancr |
|- ( ph -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) |
13 |
5 12
|
mpbird |
|- ( ph -> B e. ( _Old ` ( bday ` A ) ) ) |
14 |
|
breq2 |
|- ( b = B -> ( A A |
15 |
|
rightval |
|- ( _Right ` A ) = { b e. ( _Old ` ( bday ` A ) ) | A |
16 |
14 15
|
elrab2 |
|- ( B e. ( _Right ` A ) <-> ( B e. ( _Old ` ( bday ` A ) ) /\ A |
17 |
13 4 16
|
sylanbrc |
|- ( ph -> B e. ( _Right ` A ) ) |
18 |
|
fnfvima |
|- ( ( -us Fn No /\ ( _Right ` A ) C_ No /\ B e. ( _Right ` A ) ) -> ( -us ` B ) e. ( -us " ( _Right ` A ) ) ) |
19 |
8 9 17 18
|
mp3an12i |
|- ( ph -> ( -us ` B ) e. ( -us " ( _Right ` A ) ) ) |
20 |
|
fvex |
|- ( -us ` A ) e. _V |
21 |
20
|
snid |
|- ( -us ` A ) e. { ( -us ` A ) } |
22 |
21
|
a1i |
|- ( ph -> ( -us ` A ) e. { ( -us ` A ) } ) |
23 |
7 19 22
|
ssltsepcd |
|- ( ph -> ( -us ` B ) |