Metamath Proof Explorer


Theorem negsproplem6

Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when A is the same age as B . (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses negsproplem.1
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
negsproplem4.1
|- ( ph -> A e. No )
negsproplem4.2
|- ( ph -> B e. No )
negsproplem4.3
|- ( ph -> A 
negsproplem6.4
|- ( ph -> ( bday ` A ) = ( bday ` B ) )
Assertion negsproplem6
|- ( ph -> ( -us ` B ) 

Proof

Step Hyp Ref Expression
1 negsproplem.1
 |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
2 negsproplem4.1
 |-  ( ph -> A e. No )
3 negsproplem4.2
 |-  ( ph -> B e. No )
4 negsproplem4.3
 |-  ( ph -> A 
5 negsproplem6.4
 |-  ( ph -> ( bday ` A ) = ( bday ` B ) )
6 nodense
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A  E. d e. No ( ( bday ` d ) e. ( bday ` A ) /\ A 
7 2 3 5 4 6 syl22anc
 |-  ( ph -> E. d e. No ( ( bday ` d ) e. ( bday ` A ) /\ A 
8 uncom
 |-  ( ( bday ` A ) u. ( bday ` B ) ) = ( ( bday ` B ) u. ( bday ` A ) )
9 8 eleq2i
 |-  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) <-> ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) )
10 9 imbi1i
 |-  ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
11 10 2ralbii
 |-  ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
12 1 11 sylib
 |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
13 12 3 negsproplem3
 |-  ( ph -> ( ( -us ` B ) e. No /\ ( -us " ( _Right ` B ) ) <
14 13 simp1d
 |-  ( ph -> ( -us ` B ) e. No )
15 14 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) e. No )
16 1 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y ) 
17 simprl
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. No )
18 0sno
 |-  0s e. No
19 18 a1i
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  0s e. No )
20 bday0s
 |-  ( bday ` 0s ) = (/)
21 20 uneq2i
 |-  ( ( bday ` d ) u. ( bday ` 0s ) ) = ( ( bday ` d ) u. (/) )
22 un0
 |-  ( ( bday ` d ) u. (/) ) = ( bday ` d )
23 21 22 eqtri
 |-  ( ( bday ` d ) u. ( bday ` 0s ) ) = ( bday ` d )
24 simprr1
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( bday ` d ) e. ( bday ` A ) )
25 elun1
 |-  ( ( bday ` d ) e. ( bday ` A ) -> ( bday ` d ) e. ( ( bday ` A ) u. ( bday ` B ) ) )
26 24 25 syl
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( bday ` d ) e. ( ( bday ` A ) u. ( bday ` B ) ) )
27 23 26 eqeltrid
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( ( bday ` d ) u. ( bday ` 0s ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) )
28 16 17 19 27 negsproplem1
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( ( -us ` d ) e. No /\ ( d  ( -us ` 0s ) 
29 28 simpld
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. No )
30 1 2 negsproplem3
 |-  ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <
31 30 simp1d
 |-  ( ph -> ( -us ` A ) e. No )
32 31 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` A ) e. No )
33 13 simp3d
 |-  ( ph -> { ( -us ` B ) } <
34 33 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  { ( -us ` B ) } <
35 fvex
 |-  ( -us ` B ) e. _V
36 35 snid
 |-  ( -us ` B ) e. { ( -us ` B ) }
37 36 a1i
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) e. { ( -us ` B ) } )
38 negsfn
 |-  -us Fn No
39 leftssno
 |-  ( _Left ` B ) C_ No
40 bdayelon
 |-  ( bday ` A ) e. On
41 oldbday
 |-  ( ( ( bday ` A ) e. On /\ d e. No ) -> ( d e. ( _Old ` ( bday ` A ) ) <-> ( bday ` d ) e. ( bday ` A ) ) )
42 40 17 41 sylancr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( d e. ( _Old ` ( bday ` A ) ) <-> ( bday ` d ) e. ( bday ` A ) ) )
43 24 42 mpbird
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Old ` ( bday ` A ) ) )
44 5 fveq2d
 |-  ( ph -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) )
45 44 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) )
46 43 45 eleqtrd
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Old ` ( bday ` B ) ) )
47 simprr3
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d 
48 leftval
 |-  ( _Left ` B ) = { d e. ( _Old ` ( bday ` B ) ) | d 
49 48 reqabi
 |-  ( d e. ( _Left ` B ) <-> ( d e. ( _Old ` ( bday ` B ) ) /\ d 
50 46 47 49 sylanbrc
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Left ` B ) )
51 fnfvima
 |-  ( ( -us Fn No /\ ( _Left ` B ) C_ No /\ d e. ( _Left ` B ) ) -> ( -us ` d ) e. ( -us " ( _Left ` B ) ) )
52 38 39 50 51 mp3an12i
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. ( -us " ( _Left ` B ) ) )
53 34 37 52 ssltsepcd
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) 
54 30 simp2d
 |-  ( ph -> ( -us " ( _Right ` A ) ) <
55 54 adantr
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us " ( _Right ` A ) ) <
56 rightssno
 |-  ( _Right ` A ) C_ No
57 simprr2
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  A 
58 rightval
 |-  ( _Right ` A ) = { d e. ( _Old ` ( bday ` A ) ) | A 
59 58 reqabi
 |-  ( d e. ( _Right ` A ) <-> ( d e. ( _Old ` ( bday ` A ) ) /\ A 
60 43 57 59 sylanbrc
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Right ` A ) )
61 fnfvima
 |-  ( ( -us Fn No /\ ( _Right ` A ) C_ No /\ d e. ( _Right ` A ) ) -> ( -us ` d ) e. ( -us " ( _Right ` A ) ) )
62 38 56 60 61 mp3an12i
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. ( -us " ( _Right ` A ) ) )
63 fvex
 |-  ( -us ` A ) e. _V
64 63 snid
 |-  ( -us ` A ) e. { ( -us ` A ) }
65 64 a1i
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` A ) e. { ( -us ` A ) } )
66 55 62 65 ssltsepcd
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) 
67 15 29 32 53 66 slttrd
 |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) 
68 7 67 rexlimddv
 |-  ( ph -> ( -us ` B )