Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
|- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
2 |
|
negsproplem4.1 |
|- ( ph -> A e. No ) |
3 |
|
negsproplem4.2 |
|- ( ph -> B e. No ) |
4 |
|
negsproplem4.3 |
|- ( ph -> A |
5 |
|
bdayelon |
|- ( bday ` A ) e. On |
6 |
5
|
onordi |
|- Ord ( bday ` A ) |
7 |
|
bdayelon |
|- ( bday ` B ) e. On |
8 |
7
|
onordi |
|- Ord ( bday ` B ) |
9 |
|
ordtri3or |
|- ( ( Ord ( bday ` A ) /\ Ord ( bday ` B ) ) -> ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) ) |
10 |
6 8 9
|
mp2an |
|- ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
12 |
2
|
adantr |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> A e. No ) |
13 |
3
|
adantr |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> B e. No ) |
14 |
4
|
adantr |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> A |
15 |
|
simpr |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> ( bday ` A ) e. ( bday ` B ) ) |
16 |
11 12 13 14 15
|
negsproplem4 |
|- ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> ( -us ` B ) |
17 |
16
|
ex |
|- ( ph -> ( ( bday ` A ) e. ( bday ` B ) -> ( -us ` B ) |
18 |
1
|
adantr |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
19 |
2
|
adantr |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> A e. No ) |
20 |
3
|
adantr |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> B e. No ) |
21 |
4
|
adantr |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> A |
22 |
|
simpr |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> ( bday ` A ) = ( bday ` B ) ) |
23 |
18 19 20 21 22
|
negsproplem6 |
|- ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> ( -us ` B ) |
24 |
23
|
ex |
|- ( ph -> ( ( bday ` A ) = ( bday ` B ) -> ( -us ` B ) |
25 |
1
|
adantr |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) |
26 |
2
|
adantr |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> A e. No ) |
27 |
3
|
adantr |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> B e. No ) |
28 |
4
|
adantr |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> A |
29 |
|
simpr |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> ( bday ` B ) e. ( bday ` A ) ) |
30 |
25 26 27 28 29
|
negsproplem5 |
|- ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) |
31 |
30
|
ex |
|- ( ph -> ( ( bday ` B ) e. ( bday ` A ) -> ( -us ` B ) |
32 |
17 24 31
|
3jaod |
|- ( ph -> ( ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) |
33 |
10 32
|
mpi |
|- ( ph -> ( -us ` B ) |