Step |
Hyp |
Ref |
Expression |
1 |
|
df-neg |
|- -u B = ( 0 - B ) |
2 |
1
|
oveq2i |
|- ( A + -u B ) = ( A + ( 0 - B ) ) |
3 |
2
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A + ( 0 - B ) ) ) |
4 |
|
0cn |
|- 0 e. CC |
5 |
|
addsubass |
|- ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A + ( 0 - B ) ) ) |
6 |
4 5
|
mp3an2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A + ( 0 - B ) ) ) |
7 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
8 |
7
|
addid1d |
|- ( ( A e. CC /\ B e. CC ) -> ( A + 0 ) = A ) |
9 |
8
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A - B ) ) |
10 |
3 6 9
|
3eqtr2d |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |