Description: Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negsubdi | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( -u A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | subsub | |- ( ( 0 e. CC /\ A e. CC /\ B e. CC ) -> ( 0 - ( A - B ) ) = ( ( 0 - A ) + B ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( 0 - ( A - B ) ) = ( ( 0 - A ) + B ) ) |
| 4 | df-neg | |- -u ( A - B ) = ( 0 - ( A - B ) ) |
|
| 5 | df-neg | |- -u A = ( 0 - A ) |
|
| 6 | 5 | oveq1i | |- ( -u A + B ) = ( ( 0 - A ) + B ) |
| 7 | 3 4 6 | 3eqtr4g | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( -u A + B ) ) |