Metamath Proof Explorer


Theorem negsubdi2i

Description: Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
Assertion negsubdi2i
|- -u ( A - B ) = ( B - A )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 1 2 negsubdii
 |-  -u ( A - B ) = ( -u A + B )
4 1 negcli
 |-  -u A e. CC
5 2 1 negsubi
 |-  ( B + -u A ) = ( B - A )
6 2 4 5 addcomli
 |-  ( -u A + B ) = ( B - A )
7 3 6 eqtri
 |-  -u ( A - B ) = ( B - A )