Metamath Proof Explorer


Theorem negsubsdi2d

Description: Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses negsubsdi2d.1
|- ( ph -> A e. No )
negsubsdi2d.2
|- ( ph -> B e. No )
Assertion negsubsdi2d
|- ( ph -> ( -us ` ( A -s B ) ) = ( B -s A ) )

Proof

Step Hyp Ref Expression
1 negsubsdi2d.1
 |-  ( ph -> A e. No )
2 negsubsdi2d.2
 |-  ( ph -> B e. No )
3 2 negscld
 |-  ( ph -> ( -us ` B ) e. No )
4 negsdi
 |-  ( ( A e. No /\ ( -us ` B ) e. No ) -> ( -us ` ( A +s ( -us ` B ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) )
5 1 3 4 syl2anc
 |-  ( ph -> ( -us ` ( A +s ( -us ` B ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) )
6 negnegs
 |-  ( B e. No -> ( -us ` ( -us ` B ) ) = B )
7 2 6 syl
 |-  ( ph -> ( -us ` ( -us ` B ) ) = B )
8 7 oveq2d
 |-  ( ph -> ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) = ( ( -us ` A ) +s B ) )
9 1 negscld
 |-  ( ph -> ( -us ` A ) e. No )
10 9 2 addscomd
 |-  ( ph -> ( ( -us ` A ) +s B ) = ( B +s ( -us ` A ) ) )
11 5 8 10 3eqtrd
 |-  ( ph -> ( -us ` ( A +s ( -us ` B ) ) ) = ( B +s ( -us ` A ) ) )
12 1 2 subsvald
 |-  ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) )
13 12 fveq2d
 |-  ( ph -> ( -us ` ( A -s B ) ) = ( -us ` ( A +s ( -us ` B ) ) ) )
14 2 1 subsvald
 |-  ( ph -> ( B -s A ) = ( B +s ( -us ` A ) ) )
15 11 13 14 3eqtr4d
 |-  ( ph -> ( -us ` ( A -s B ) ) = ( B -s A ) )