Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | negsval2 | |- ( A e. No -> ( -us ` A ) = ( 0s -s A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno | |- 0s e. No |
|
2 | subsval | |- ( ( 0s e. No /\ A e. No ) -> ( 0s -s A ) = ( 0s +s ( -us ` A ) ) ) |
|
3 | 1 2 | mpan | |- ( A e. No -> ( 0s -s A ) = ( 0s +s ( -us ` A ) ) ) |
4 | negscl | |- ( A e. No -> ( -us ` A ) e. No ) |
|
5 | addslid | |- ( ( -us ` A ) e. No -> ( 0s +s ( -us ` A ) ) = ( -us ` A ) ) |
|
6 | 4 5 | syl | |- ( A e. No -> ( 0s +s ( -us ` A ) ) = ( -us ` A ) ) |
7 | 3 6 | eqtr2d | |- ( A e. No -> ( -us ` A ) = ( 0s -s A ) ) |