Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negsval2d.1 | |- ( ph -> A e. No ) |
|
Assertion | negsval2d | |- ( ph -> ( -us ` A ) = ( 0s -s A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsval2d.1 | |- ( ph -> A e. No ) |
|
2 | negsval2 | |- ( A e. No -> ( -us ` A ) = ( 0s -s A ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( -us ` A ) = ( 0s -s A ) ) |