| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- U. J = U. J |
| 2 |
1
|
neiss2 |
|- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ U. J ) |
| 3 |
1
|
isnei |
|- ( ( J e. Top /\ S C_ U. J ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ U. J /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 4 |
|
simpr |
|- ( ( N C_ U. J /\ E. g e. J ( S C_ g /\ g C_ N ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 5 |
3 4
|
biimtrdi |
|- ( ( J e. Top /\ S C_ U. J ) -> ( N e. ( ( nei ` J ) ` S ) -> E. g e. J ( S C_ g /\ g C_ N ) ) ) |
| 6 |
5
|
impancom |
|- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> ( S C_ U. J -> E. g e. J ( S C_ g /\ g C_ N ) ) ) |
| 7 |
2 6
|
mpd |
|- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |