Step |
Hyp |
Ref |
Expression |
1 |
|
neifval.1 |
|- X = U. J |
2 |
1
|
isnei |
|- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. v e. J ( S C_ v /\ v C_ N ) ) ) ) |
3 |
2
|
3adant3 |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. v e. J ( S C_ v /\ v C_ N ) ) ) ) |
4 |
3
|
3anibar |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> E. v e. J ( S C_ v /\ v C_ N ) ) ) |
5 |
|
simprrl |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> S C_ v ) |
6 |
1
|
ssntr |
|- ( ( ( J e. Top /\ N C_ X ) /\ ( v e. J /\ v C_ N ) ) -> v C_ ( ( int ` J ) ` N ) ) |
7 |
6
|
3adantl2 |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ v C_ N ) ) -> v C_ ( ( int ` J ) ` N ) ) |
8 |
7
|
adantrrl |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> v C_ ( ( int ` J ) ` N ) ) |
9 |
5 8
|
sstrd |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> S C_ ( ( int ` J ) ` N ) ) |
10 |
9
|
rexlimdvaa |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( E. v e. J ( S C_ v /\ v C_ N ) -> S C_ ( ( int ` J ) ` N ) ) ) |
11 |
|
simpl1 |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> J e. Top ) |
12 |
|
simpl3 |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> N C_ X ) |
13 |
1
|
ntropn |
|- ( ( J e. Top /\ N C_ X ) -> ( ( int ` J ) ` N ) e. J ) |
14 |
11 12 13
|
syl2anc |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> ( ( int ` J ) ` N ) e. J ) |
15 |
|
simpr |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> S C_ ( ( int ` J ) ` N ) ) |
16 |
1
|
ntrss2 |
|- ( ( J e. Top /\ N C_ X ) -> ( ( int ` J ) ` N ) C_ N ) |
17 |
11 12 16
|
syl2anc |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> ( ( int ` J ) ` N ) C_ N ) |
18 |
|
sseq2 |
|- ( v = ( ( int ` J ) ` N ) -> ( S C_ v <-> S C_ ( ( int ` J ) ` N ) ) ) |
19 |
|
sseq1 |
|- ( v = ( ( int ` J ) ` N ) -> ( v C_ N <-> ( ( int ` J ) ` N ) C_ N ) ) |
20 |
18 19
|
anbi12d |
|- ( v = ( ( int ` J ) ` N ) -> ( ( S C_ v /\ v C_ N ) <-> ( S C_ ( ( int ` J ) ` N ) /\ ( ( int ` J ) ` N ) C_ N ) ) ) |
21 |
20
|
rspcev |
|- ( ( ( ( int ` J ) ` N ) e. J /\ ( S C_ ( ( int ` J ) ` N ) /\ ( ( int ` J ) ` N ) C_ N ) ) -> E. v e. J ( S C_ v /\ v C_ N ) ) |
22 |
14 15 17 21
|
syl12anc |
|- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> E. v e. J ( S C_ v /\ v C_ N ) ) |
23 |
22
|
ex |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( S C_ ( ( int ` J ) ` N ) -> E. v e. J ( S C_ v /\ v C_ N ) ) ) |
24 |
10 23
|
impbid |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( E. v e. J ( S C_ v /\ v C_ N ) <-> S C_ ( ( int ` J ) ` N ) ) ) |
25 |
4 24
|
bitrd |
|- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` N ) ) ) |