| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpnei.1 |  |-  X = U. J | 
						
							| 2 | 1 | elcls |  |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) | 
						
							| 3 | 1 | isneip |  |-  ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) <-> ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) ) ) | 
						
							| 4 |  | r19.29r |  |-  ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) ) | 
						
							| 5 |  | pm3.35 |  |-  ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x i^i S ) =/= (/) ) | 
						
							| 6 |  | ssrin |  |-  ( x C_ n -> ( x i^i S ) C_ ( n i^i S ) ) | 
						
							| 7 |  | sseq2 |  |-  ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) <-> ( x i^i S ) C_ (/) ) ) | 
						
							| 8 |  | ss0 |  |-  ( ( x i^i S ) C_ (/) -> ( x i^i S ) = (/) ) | 
						
							| 9 | 7 8 | biimtrdi |  |-  ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) -> ( x i^i S ) = (/) ) ) | 
						
							| 10 | 6 9 | syl5com |  |-  ( x C_ n -> ( ( n i^i S ) = (/) -> ( x i^i S ) = (/) ) ) | 
						
							| 11 | 10 | necon3d |  |-  ( x C_ n -> ( ( x i^i S ) =/= (/) -> ( n i^i S ) =/= (/) ) ) | 
						
							| 12 | 5 11 | syl5com |  |-  ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) | 
						
							| 13 | 12 | ex |  |-  ( P e. x -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) ) | 
						
							| 14 | 13 | com23 |  |-  ( P e. x -> ( x C_ n -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) | 
						
							| 15 | 14 | imp31 |  |-  ( ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) | 
						
							| 16 | 15 | rexlimivw |  |-  ( E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) | 
						
							| 17 | 4 16 | syl |  |-  ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) | 
						
							| 18 | 17 | ex |  |-  ( E. x e. J ( P e. x /\ x C_ n ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) | 
						
							| 20 | 3 19 | biimtrdi |  |-  ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) | 
						
							| 21 | 20 | 3adant2 |  |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) | 
						
							| 22 | 21 | com23 |  |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) | 
						
							| 24 | 23 | ralrimiv |  |-  ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) | 
						
							| 25 |  | opnneip |  |-  ( ( J e. Top /\ x e. J /\ P e. x ) -> x e. ( ( nei ` J ) ` { P } ) ) | 
						
							| 26 |  | ineq1 |  |-  ( n = x -> ( n i^i S ) = ( x i^i S ) ) | 
						
							| 27 | 26 | neeq1d |  |-  ( n = x -> ( ( n i^i S ) =/= (/) <-> ( x i^i S ) =/= (/) ) ) | 
						
							| 28 | 27 | rspccva |  |-  ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( x i^i S ) =/= (/) ) | 
						
							| 29 |  | idd |  |-  ( ( P e. X /\ ( J e. Top /\ x e. J /\ P e. x ) /\ S C_ X ) -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) | 
						
							| 30 | 29 | 3exp |  |-  ( P e. X -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) ) ) | 
						
							| 31 | 30 | com14 |  |-  ( ( x i^i S ) =/= (/) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) | 
						
							| 32 | 28 31 | syl |  |-  ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) | 
						
							| 33 | 32 | ex |  |-  ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) | 
						
							| 34 | 33 | com3l |  |-  ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) | 
						
							| 35 | 25 34 | mpcom |  |-  ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) | 
						
							| 36 | 35 | 3expia |  |-  ( ( J e. Top /\ x e. J ) -> ( P e. x -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) | 
						
							| 37 | 36 | com25 |  |-  ( ( J e. Top /\ x e. J ) -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) | 
						
							| 38 | 37 | ex |  |-  ( J e. Top -> ( x e. J -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) | 
						
							| 39 | 38 | com25 |  |-  ( J e. Top -> ( S C_ X -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) | 
						
							| 40 | 39 | 3imp1 |  |-  ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) | 
						
							| 41 | 40 | ralrimiv |  |-  ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) | 
						
							| 42 | 24 41 | impbida |  |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) | 
						
							| 43 | 2 42 | bitrd |  |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |