Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J | |
| Assertion | neisspw | |- ( J e. Top -> ( ( nei ` J ) ` S ) C_ ~P X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J | |
| 2 | 1 | neii1 | |- ( ( J e. Top /\ v e. ( ( nei ` J ) ` S ) ) -> v C_ X ) | 
| 3 | velpw | |- ( v e. ~P X <-> v C_ X ) | |
| 4 | 2 3 | sylibr | |- ( ( J e. Top /\ v e. ( ( nei ` J ) ` S ) ) -> v e. ~P X ) | 
| 5 | 4 | ex | |- ( J e. Top -> ( v e. ( ( nei ` J ) ` S ) -> v e. ~P X ) ) | 
| 6 | 5 | ssrdv | |- ( J e. Top -> ( ( nei ` J ) ` S ) C_ ~P X ) |