| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpnei.1 |  |-  X = U. J | 
						
							| 2 | 1 | tpnei |  |-  ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) | 
						
							| 3 | 2 | biimpa |  |-  ( ( J e. Top /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) ) | 
						
							| 4 |  | elssuni |  |-  ( X e. ( ( nei ` J ) ` S ) -> X C_ U. ( ( nei ` J ) ` S ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( J e. Top /\ S C_ X ) -> X C_ U. ( ( nei ` J ) ` S ) ) | 
						
							| 6 | 1 | neii1 |  |-  ( ( J e. Top /\ x e. ( ( nei ` J ) ` S ) ) -> x C_ X ) | 
						
							| 7 | 6 | ex |  |-  ( J e. Top -> ( x e. ( ( nei ` J ) ` S ) -> x C_ X ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( nei ` J ) ` S ) -> x C_ X ) ) | 
						
							| 9 | 8 | ralrimiv |  |-  ( ( J e. Top /\ S C_ X ) -> A. x e. ( ( nei ` J ) ` S ) x C_ X ) | 
						
							| 10 |  | unissb |  |-  ( U. ( ( nei ` J ) ` S ) C_ X <-> A. x e. ( ( nei ` J ) ` S ) x C_ X ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( J e. Top /\ S C_ X ) -> U. ( ( nei ` J ) ` S ) C_ X ) | 
						
							| 12 | 5 11 | eqssd |  |-  ( ( J e. Top /\ S C_ X ) -> X = U. ( ( nei ` J ) ` S ) ) |