Description: From the general negation of membership in A , infer that A is the empty set. (Contributed by BJ, 6-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nel0.1 | |- -. x e. A |
|
| Assertion | nel0 | |- A = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nel0.1 | |- -. x e. A |
|
| 2 | eq0 | |- ( A = (/) <-> A. x -. x e. A ) |
|
| 3 | 2 1 | mpgbir | |- A = (/) |