Metamath Proof Explorer


Theorem nel2nelini

Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis nel2nelini.1
|- -. A e. C
Assertion nel2nelini
|- -. A e. ( B i^i C )

Proof

Step Hyp Ref Expression
1 nel2nelini.1
 |-  -. A e. C
2 nel2nelin
 |-  ( -. A e. C -> -. A e. ( B i^i C ) )
3 1 2 ax-mp
 |-  -. A e. ( B i^i C )