Metamath Proof Explorer


Theorem neldif

Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994)

Ref Expression
Assertion neldif
|- ( ( A e. B /\ -. A e. ( B \ C ) ) -> A e. C )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) )
2 1 simplbi2
 |-  ( A e. B -> ( -. A e. C -> A e. ( B \ C ) ) )
3 2 con1d
 |-  ( A e. B -> ( -. A e. ( B \ C ) -> A e. C ) )
4 3 imp
 |-  ( ( A e. B /\ -. A e. ( B \ C ) ) -> A e. C )