Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | neldif | |- ( ( A e. B /\ -. A e. ( B \ C ) ) -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |- ( A e. ( B \ C ) <-> ( A e. B /\ -. A e. C ) ) |
|
2 | 1 | simplbi2 | |- ( A e. B -> ( -. A e. C -> A e. ( B \ C ) ) ) |
3 | 2 | con1d | |- ( A e. B -> ( -. A e. ( B \ C ) -> A e. C ) ) |
4 | 3 | imp | |- ( ( A e. B /\ -. A e. ( B \ C ) ) -> A e. C ) |