Description: The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | neldifpr1 | |- -. A e. ( C \ { A , B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr | |- -. A =/= A |
|
2 | eldifpr | |- ( A e. ( C \ { A , B } ) <-> ( A e. C /\ A =/= A /\ A =/= B ) ) |
|
3 | 2 | simp2bi | |- ( A e. ( C \ { A , B } ) -> A =/= A ) |
4 | 1 3 | mto | |- -. A e. ( C \ { A , B } ) |