Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | neldifpr2 | |- -. B e. ( C \ { A , B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr | |- -. B =/= B |
|
2 | eldifpr | |- ( B e. ( C \ { A , B } ) <-> ( B e. C /\ B =/= A /\ B =/= B ) ) |
|
3 | 2 | simp3bi | |- ( B e. ( C \ { A , B } ) -> B =/= B ) |
4 | 1 3 | mto | |- -. B e. ( C \ { A , B } ) |