Metamath Proof Explorer


Theorem nelelne

Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010) (Proof shortened by AV, 10-May-2020)

Ref Expression
Assertion nelelne
|- ( -. A e. B -> ( C e. B -> C =/= A ) )

Proof

Step Hyp Ref Expression
1 nelne2
 |-  ( ( C e. B /\ -. A e. B ) -> C =/= A )
2 1 expcom
 |-  ( -. A e. B -> ( C e. B -> C =/= A ) )