Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neleq12d.1 | |- ( ph -> A = B ) |
|
| neleq12d.2 | |- ( ph -> C = D ) |
||
| Assertion | neleq12d | |- ( ph -> ( A e/ C <-> B e/ D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | |- ( ph -> A = B ) |
|
| 2 | neleq12d.2 | |- ( ph -> C = D ) |
|
| 3 | 1 2 | eleq12d | |- ( ph -> ( A e. C <-> B e. D ) ) |
| 4 | 3 | notbid | |- ( ph -> ( -. A e. C <-> -. B e. D ) ) |
| 5 | df-nel | |- ( A e/ C <-> -. A e. C ) |
|
| 6 | df-nel | |- ( B e/ D <-> -. B e. D ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ph -> ( A e/ C <-> B e/ D ) ) |