Metamath Proof Explorer


Theorem neleqtrrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)

Ref Expression
Hypotheses neleqtrrd.1
|- ( ph -> -. C e. B )
neleqtrrd.2
|- ( ph -> A = B )
Assertion neleqtrrd
|- ( ph -> -. C e. A )

Proof

Step Hyp Ref Expression
1 neleqtrrd.1
 |-  ( ph -> -. C e. B )
2 neleqtrrd.2
 |-  ( ph -> A = B )
3 2 eqcomd
 |-  ( ph -> B = A )
4 1 3 neleqtrd
 |-  ( ph -> -. C e. A )