Metamath Proof Explorer


Theorem nelir

Description: Inference associated with df-nel . (Contributed by BJ, 7-Jul-2018)

Ref Expression
Hypothesis nelir.1
|- -. A e. B
Assertion nelir
|- A e/ B

Proof

Step Hyp Ref Expression
1 nelir.1
 |-  -. A e. B
2 df-nel
 |-  ( A e/ B <-> -. A e. B )
3 1 2 mpbir
 |-  A e/ B