Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012) (Proof shortened by Wolf Lammen, 14-May-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nelne2 | |- ( ( A e. C /\ -. B e. C ) -> A =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq | |- ( ( A e. C /\ -. B e. C ) -> -. A = B ) |
|
2 | 1 | neqned | |- ( ( A e. C /\ -. B e. C ) -> A =/= B ) |