Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | nelneq2 | |- ( ( A e. B /\ -. A e. C ) -> -. B = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( B = C -> ( A e. B <-> A e. C ) ) |
|
2 | 1 | biimpcd | |- ( A e. B -> ( B = C -> A e. C ) ) |
3 | 2 | con3dimp | |- ( ( A e. B /\ -. A e. C ) -> -. B = C ) |