Metamath Proof Explorer


Theorem nelpr

Description: A set A not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion nelpr
|- ( A e. V -> ( -. A e. { B , C } <-> ( A =/= B /\ A =/= C ) ) )

Proof

Step Hyp Ref Expression
1 elprg
 |-  ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
2 1 notbid
 |-  ( A e. V -> ( -. A e. { B , C } <-> -. ( A = B \/ A = C ) ) )
3 neanior
 |-  ( ( A =/= B /\ A =/= C ) <-> -. ( A = B \/ A = C ) )
4 2 3 bitr4di
 |-  ( A e. V -> ( -. A e. { B , C } <-> ( A =/= B /\ A =/= C ) ) )