Description: A set A not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nelpr | |- ( A e. V -> ( -. A e. { B , C } <-> ( A =/= B /\ A =/= C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg | |- ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
2 | 1 | notbid | |- ( A e. V -> ( -. A e. { B , C } <-> -. ( A = B \/ A = C ) ) ) |
3 | neanior | |- ( ( A =/= B /\ A =/= C ) <-> -. ( A = B \/ A = C ) ) |
|
4 | 2 3 | bitr4di | |- ( A e. V -> ( -. A e. { B , C } <-> ( A =/= B /\ A =/= C ) ) ) |