Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelpr1.a | |- ( ph -> A e. V ) | |
| nelpr1.n | |- ( ph -> -. A e. { B , C } ) | ||
| Assertion | nelpr1 | |- ( ph -> A =/= B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelpr1.a | |- ( ph -> A e. V ) | |
| 2 | nelpr1.n |  |-  ( ph -> -. A e. { B , C } ) | |
| 3 | animorrl | |- ( ( ph /\ A = B ) -> ( A = B \/ A = C ) ) | |
| 4 | elprg |  |-  ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) | |
| 5 | 1 4 | syl |  |-  ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) | 
| 6 | 5 | adantr |  |-  ( ( ph /\ A = B ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) | 
| 7 | 3 6 | mpbird |  |-  ( ( ph /\ A = B ) -> A e. { B , C } ) | 
| 8 | 2 7 | mtand | |- ( ph -> -. A = B ) | 
| 9 | 8 | neqned | |- ( ph -> A =/= B ) |