Metamath Proof Explorer


Theorem nelpr1

Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr1.a
|- ( ph -> A e. V )
nelpr1.n
|- ( ph -> -. A e. { B , C } )
Assertion nelpr1
|- ( ph -> A =/= B )

Proof

Step Hyp Ref Expression
1 nelpr1.a
 |-  ( ph -> A e. V )
2 nelpr1.n
 |-  ( ph -> -. A e. { B , C } )
3 animorrl
 |-  ( ( ph /\ A = B ) -> ( A = B \/ A = C ) )
4 elprg
 |-  ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
5 1 4 syl
 |-  ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
6 5 adantr
 |-  ( ( ph /\ A = B ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
7 3 6 mpbird
 |-  ( ( ph /\ A = B ) -> A e. { B , C } )
8 2 7 mtand
 |-  ( ph -> -. A = B )
9 8 neqned
 |-  ( ph -> A =/= B )