Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nelpr2.a | |- ( ph -> A e. V ) |
|
nelpr2.n | |- ( ph -> -. A e. { B , C } ) |
||
Assertion | nelpr2 | |- ( ph -> A =/= C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpr2.a | |- ( ph -> A e. V ) |
|
2 | nelpr2.n | |- ( ph -> -. A e. { B , C } ) |
|
3 | animorr | |- ( ( ph /\ A = C ) -> ( A = B \/ A = C ) ) |
|
4 | elprg | |- ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
5 | 1 4 | syl | |- ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
6 | 5 | adantr | |- ( ( ph /\ A = C ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
7 | 3 6 | mpbird | |- ( ( ph /\ A = C ) -> A e. { B , C } ) |
8 | 2 7 | mtand | |- ( ph -> -. A = C ) |
9 | 8 | neqned | |- ( ph -> A =/= C ) |