Metamath Proof Explorer


Theorem nelpr2

Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr2.a
|- ( ph -> A e. V )
nelpr2.n
|- ( ph -> -. A e. { B , C } )
Assertion nelpr2
|- ( ph -> A =/= C )

Proof

Step Hyp Ref Expression
1 nelpr2.a
 |-  ( ph -> A e. V )
2 nelpr2.n
 |-  ( ph -> -. A e. { B , C } )
3 animorr
 |-  ( ( ph /\ A = C ) -> ( A = B \/ A = C ) )
4 elprg
 |-  ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
5 1 4 syl
 |-  ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
6 5 adantr
 |-  ( ( ph /\ A = C ) -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
7 3 6 mpbird
 |-  ( ( ph /\ A = C ) -> A e. { B , C } )
8 2 7 mtand
 |-  ( ph -> -. A = C )
9 8 neqned
 |-  ( ph -> A =/= C )