Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nelprd.1 | |- ( ph -> A =/= B ) |
|
nelprd.2 | |- ( ph -> A =/= C ) |
||
Assertion | nelprd | |- ( ph -> -. A e. { B , C } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelprd.1 | |- ( ph -> A =/= B ) |
|
2 | nelprd.2 | |- ( ph -> A =/= C ) |
|
3 | neanior | |- ( ( A =/= B /\ A =/= C ) <-> -. ( A = B \/ A = C ) ) |
|
4 | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
|
5 | 4 | con3i | |- ( -. ( A = B \/ A = C ) -> -. A e. { B , C } ) |
6 | 3 5 | sylbi | |- ( ( A =/= B /\ A =/= C ) -> -. A e. { B , C } ) |
7 | 1 2 6 | syl2anc | |- ( ph -> -. A e. { B , C } ) |