Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nelpri.1 | |- A =/= B |
|
nelpri.2 | |- A =/= C |
||
Assertion | nelpri | |- -. A e. { B , C } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | |- A =/= B |
|
2 | nelpri.2 | |- A =/= C |
|
3 | neanior | |- ( ( A =/= B /\ A =/= C ) <-> -. ( A = B \/ A = C ) ) |
|
4 | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
|
5 | 4 | con3i | |- ( -. ( A = B \/ A = C ) -> -. A e. { B , C } ) |
6 | 3 5 | sylbi | |- ( ( A =/= B /\ A =/= C ) -> -. A e. { B , C } ) |
7 | 1 2 6 | mp2an | |- -. A e. { B , C } |