Metamath Proof Explorer


Theorem nelpri

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses nelpri.1
|- A =/= B
nelpri.2
|- A =/= C
Assertion nelpri
|- -. A e. { B , C }

Proof

Step Hyp Ref Expression
1 nelpri.1
 |-  A =/= B
2 nelpri.2
 |-  A =/= C
3 neanior
 |-  ( ( A =/= B /\ A =/= C ) <-> -. ( A = B \/ A = C ) )
4 elpri
 |-  ( A e. { B , C } -> ( A = B \/ A = C ) )
5 4 con3i
 |-  ( -. ( A = B \/ A = C ) -> -. A e. { B , C } )
6 3 5 sylbi
 |-  ( ( A =/= B /\ A =/= C ) -> -. A e. { B , C } )
7 1 2 6 mp2an
 |-  -. A e. { B , C }