| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelrdva.1 |
|- ( ( ph /\ x e. A ) -> x =/= B ) |
| 2 |
|
eqidd |
|- ( ( ph /\ B e. A ) -> B = B ) |
| 3 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
| 4 |
3
|
anbi2d |
|- ( x = B -> ( ( ph /\ x e. A ) <-> ( ph /\ B e. A ) ) ) |
| 5 |
|
neeq1 |
|- ( x = B -> ( x =/= B <-> B =/= B ) ) |
| 6 |
4 5
|
imbi12d |
|- ( x = B -> ( ( ( ph /\ x e. A ) -> x =/= B ) <-> ( ( ph /\ B e. A ) -> B =/= B ) ) ) |
| 7 |
6 1
|
vtoclg |
|- ( B e. A -> ( ( ph /\ B e. A ) -> B =/= B ) ) |
| 8 |
7
|
anabsi7 |
|- ( ( ph /\ B e. A ) -> B =/= B ) |
| 9 |
8
|
neneqd |
|- ( ( ph /\ B e. A ) -> -. B = B ) |
| 10 |
2 9
|
pm2.65da |
|- ( ph -> -. B e. A ) |