Metamath Proof Explorer


Theorem nelrdva

Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017)

Ref Expression
Hypothesis nelrdva.1
|- ( ( ph /\ x e. A ) -> x =/= B )
Assertion nelrdva
|- ( ph -> -. B e. A )

Proof

Step Hyp Ref Expression
1 nelrdva.1
 |-  ( ( ph /\ x e. A ) -> x =/= B )
2 eqidd
 |-  ( ( ph /\ B e. A ) -> B = B )
3 eleq1
 |-  ( x = B -> ( x e. A <-> B e. A ) )
4 3 anbi2d
 |-  ( x = B -> ( ( ph /\ x e. A ) <-> ( ph /\ B e. A ) ) )
5 neeq1
 |-  ( x = B -> ( x =/= B <-> B =/= B ) )
6 4 5 imbi12d
 |-  ( x = B -> ( ( ( ph /\ x e. A ) -> x =/= B ) <-> ( ( ph /\ B e. A ) -> B =/= B ) ) )
7 6 1 vtoclg
 |-  ( B e. A -> ( ( ph /\ B e. A ) -> B =/= B ) )
8 7 anabsi7
 |-  ( ( ph /\ B e. A ) -> B =/= B )
9 8 neneqd
 |-  ( ( ph /\ B e. A ) -> -. B = B )
10 2 9 pm2.65da
 |-  ( ph -> -. B e. A )