| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelrdva.1 |  |-  ( ( ph /\ x e. A ) -> x =/= B ) | 
						
							| 2 |  | eqidd |  |-  ( ( ph /\ B e. A ) -> B = B ) | 
						
							| 3 |  | eleq1 |  |-  ( x = B -> ( x e. A <-> B e. A ) ) | 
						
							| 4 | 3 | anbi2d |  |-  ( x = B -> ( ( ph /\ x e. A ) <-> ( ph /\ B e. A ) ) ) | 
						
							| 5 |  | neeq1 |  |-  ( x = B -> ( x =/= B <-> B =/= B ) ) | 
						
							| 6 | 4 5 | imbi12d |  |-  ( x = B -> ( ( ( ph /\ x e. A ) -> x =/= B ) <-> ( ( ph /\ B e. A ) -> B =/= B ) ) ) | 
						
							| 7 | 6 1 | vtoclg |  |-  ( B e. A -> ( ( ph /\ B e. A ) -> B =/= B ) ) | 
						
							| 8 | 7 | anabsi7 |  |-  ( ( ph /\ B e. A ) -> B =/= B ) | 
						
							| 9 | 8 | neneqd |  |-  ( ( ph /\ B e. A ) -> -. B = B ) | 
						
							| 10 | 2 9 | pm2.65da |  |-  ( ph -> -. B e. A ) |