Step |
Hyp |
Ref |
Expression |
1 |
|
nelrnmpt.x |
|- F/ x ph |
2 |
|
nelrnmpt.f |
|- F = ( x e. A |-> B ) |
3 |
|
nelrnmpt.c |
|- ( ph -> C e. V ) |
4 |
|
nelrnmpt.n |
|- ( ( ph /\ x e. A ) -> C =/= B ) |
5 |
4
|
neneqd |
|- ( ( ph /\ x e. A ) -> -. C = B ) |
6 |
5
|
ex |
|- ( ph -> ( x e. A -> -. C = B ) ) |
7 |
1 6
|
ralrimi |
|- ( ph -> A. x e. A -. C = B ) |
8 |
|
ralnex |
|- ( A. x e. A -. C = B <-> -. E. x e. A C = B ) |
9 |
7 8
|
sylib |
|- ( ph -> -. E. x e. A C = B ) |
10 |
2
|
elrnmpt |
|- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) ) |
11 |
3 10
|
syl |
|- ( ph -> ( C e. ran F <-> E. x e. A C = B ) ) |
12 |
9 11
|
mtbird |
|- ( ph -> -. C e. ran F ) |