Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020) (Proof shortened by BJ, 4-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nelsn | |- ( A =/= B -> -. A e. { B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni | |- ( A e. { B } -> A = B ) |
|
2 | 1 | necon3ai | |- ( A =/= B -> -. A e. { B } ) |