Metamath Proof Explorer


Theorem nelsn

Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020) (Proof shortened by BJ, 4-May-2021)

Ref Expression
Assertion nelsn
|- ( A =/= B -> -. A e. { B } )

Proof

Step Hyp Ref Expression
1 elsni
 |-  ( A e. { B } -> A = B )
2 1 necon3ai
 |-  ( A =/= B -> -. A e. { B } )