Description: An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nemnftgtmnft | |- ( ( A e. RR* /\ A =/= -oo ) -> -oo < A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |- ( ( A e. RR* /\ A =/= -oo ) -> A =/= -oo ) |
|
2 | 1 | neneqd | |- ( ( A e. RR* /\ A =/= -oo ) -> -. A = -oo ) |
3 | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
|
4 | 3 | adantr | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A = -oo <-> -. -oo < A ) ) |
5 | 2 4 | mtbid | |- ( ( A e. RR* /\ A =/= -oo ) -> -. -. -oo < A ) |
6 | notnotb | |- ( -oo < A <-> -. -. -oo < A ) |
|
7 | 5 6 | sylibr | |- ( ( A e. RR* /\ A =/= -oo ) -> -oo < A ) |