Metamath Proof Explorer


Theorem nemnftgtmnft

Description: An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion nemnftgtmnft
|- ( ( A e. RR* /\ A =/= -oo ) -> -oo < A )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( A e. RR* /\ A =/= -oo ) -> A =/= -oo )
2 1 neneqd
 |-  ( ( A e. RR* /\ A =/= -oo ) -> -. A = -oo )
3 ngtmnft
 |-  ( A e. RR* -> ( A = -oo <-> -. -oo < A ) )
4 3 adantr
 |-  ( ( A e. RR* /\ A =/= -oo ) -> ( A = -oo <-> -. -oo < A ) )
5 2 4 mtbid
 |-  ( ( A e. RR* /\ A =/= -oo ) -> -. -. -oo < A )
6 notnotb
 |-  ( -oo < A <-> -. -. -oo < A )
7 5 6 sylibr
 |-  ( ( A e. RR* /\ A =/= -oo ) -> -oo < A )