Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neneqd.1 | |- ( ph -> A =/= B ) |
|
Assertion | neneqd | |- ( ph -> -. A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqd.1 | |- ( ph -> A =/= B ) |
|
2 | df-ne | |- ( A =/= B <-> -. A = B ) |
|
3 | 1 2 | sylib | |- ( ph -> -. A = B ) |