Metamath Proof Explorer


Theorem neorian

Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007)

Ref Expression
Assertion neorian
|- ( ( A =/= B \/ C =/= D ) <-> -. ( A = B /\ C = D ) )

Proof

Step Hyp Ref Expression
1 df-ne
 |-  ( A =/= B <-> -. A = B )
2 df-ne
 |-  ( C =/= D <-> -. C = D )
3 1 2 orbi12i
 |-  ( ( A =/= B \/ C =/= D ) <-> ( -. A = B \/ -. C = D ) )
4 ianor
 |-  ( -. ( A = B /\ C = D ) <-> ( -. A = B \/ -. C = D ) )
5 3 4 bitr4i
 |-  ( ( A =/= B \/ C =/= D ) <-> -. ( A = B /\ C = D ) )