Metamath Proof Explorer


Theorem neq0f

Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. This version of neq0 requires only that x not be free in, rather than not occur in, A . (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eq0f.1
|- F/_ x A
Assertion neq0f
|- ( -. A = (/) <-> E. x x e. A )

Proof

Step Hyp Ref Expression
1 eq0f.1
 |-  F/_ x A
2 1 eq0f
 |-  ( A = (/) <-> A. x -. x e. A )
3 2 notbii
 |-  ( -. A = (/) <-> -. A. x -. x e. A )
4 df-ex
 |-  ( E. x x e. A <-> -. A. x -. x e. A )
5 3 4 bitr4i
 |-  ( -. A = (/) <-> E. x x e. A )