Description: Inference associated with nesym . (Contributed by BJ, 7-Jul-2018) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nesymir.1 | |- -. A = B |
|
| Assertion | nesymir | |- B =/= A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymir.1 | |- -. A = B |
|
| 2 | 1 | neir | |- A =/= B |
| 3 | 2 | necomi | |- B =/= A |