Metamath Proof Explorer


Theorem newbdayim

Description: One direction of the biconditional in newbday . (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion newbdayim
|- ( X e. ( _New ` A ) -> ( bday ` X ) = A )

Proof

Step Hyp Ref Expression
1 elfvdm
 |-  ( X e. ( _New ` A ) -> A e. dom _New )
2 newf
 |-  _New : On --> ~P No
3 fdm
 |-  ( _New : On --> ~P No -> dom _New = On )
4 2 3 ax-mp
 |-  dom _New = On
5 1 4 eleqtrdi
 |-  ( X e. ( _New ` A ) -> A e. On )
6 newssno
 |-  ( _New ` A ) C_ No
7 6 sseli
 |-  ( X e. ( _New ` A ) -> X e. No )
8 newbday
 |-  ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) )
9 5 7 8 syl2anc
 |-  ( X e. ( _New ` A ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) )
10 9 ibi
 |-  ( X e. ( _New ` A ) -> ( bday ` X ) = A )