Metamath Proof Explorer


Theorem newf

Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion newf
|- _New : On --> ~P No

Proof

Step Hyp Ref Expression
1 df-new
 |-  _New = ( x e. On |-> ( ( _Made ` x ) \ ( _Old ` x ) ) )
2 madef
 |-  _Made : On --> ~P No
3 2 ffvelcdmi
 |-  ( x e. On -> ( _Made ` x ) e. ~P No )
4 3 elpwid
 |-  ( x e. On -> ( _Made ` x ) C_ No )
5 4 ssdifssd
 |-  ( x e. On -> ( ( _Made ` x ) \ ( _Old ` x ) ) C_ No )
6 fvex
 |-  ( _Made ` x ) e. _V
7 6 difexi
 |-  ( ( _Made ` x ) \ ( _Old ` x ) ) e. _V
8 7 elpw
 |-  ( ( ( _Made ` x ) \ ( _Old ` x ) ) e. ~P No <-> ( ( _Made ` x ) \ ( _Old ` x ) ) C_ No )
9 5 8 sylibr
 |-  ( x e. On -> ( ( _Made ` x ) \ ( _Old ` x ) ) e. ~P No )
10 1 9 fmpti
 |-  _New : On --> ~P No