Metamath Proof Explorer


Theorem nexd

Description: Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nexd.1
|- F/ x ph
nexd.2
|- ( ph -> -. ps )
Assertion nexd
|- ( ph -> -. E. x ps )

Proof

Step Hyp Ref Expression
1 nexd.1
 |-  F/ x ph
2 nexd.2
 |-  ( ph -> -. ps )
3 1 nf5ri
 |-  ( ph -> A. x ph )
4 3 2 nexdh
 |-  ( ph -> -. E. x ps )